A GENERALIZED TREATMENT OF CUBIC EQUATIONS OF STATE

Vladimír Míka
Department of Chemical Engineering, Prague Institute of Chemical Technology, 16628 Prague 6

Received February 8, 1989
Accepted April 10, 1989

Dedicated to late Academician Eduard Hála.

Abstract

From the formula proposed for the van der Waals type equations of state, general expressions for the compressibility factor, the departure functions and the fugacity coefficient are derived. Easy construction of the formula needed is possible for any of the equations listed in the paper. The method is applicable to other equations of this type.

The equations of state (EOS) based on the van der Waals equation are often used for engineering calculations. The advantage of a generalized form of these equations has been recognized and the most thorough application can be found in the recent edition of the book by Reid et al. ${ }^{1}$ The published cubic EOS contain up to four empirical coefficients. However, the generalized expressions given by Reid et al. ${ }^{1}$ may be used only for the EOS with two coefficients. Therefore a more general procedure is proposed here. Equations for the compressibility factor, the thermodynamic departure functions and for the fugacity coefficient of a component in a fluid mixture are derived in terms of general parameters. Tables were prepared for a number of EOS, which give the appropriate formulae for these parameters. This enables easy construction of the required expression for each of the EOS listed. The method may be extended to further EOS of the van der Waals form.

Compressibility Factor

The cubic EOS of the van der Waals type can be represented by a general formula

$$
\begin{equation*}
p=\frac{R T}{v-b}-\frac{a}{w}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
w=v^{2}+c_{1} v+c_{2} . \tag{2}
\end{equation*}
$$

Table I summarizes various expressions for the coefficients c_{1} and c_{2} characterizing
different EOS. It is usually convenient to write Eq. (l) in a dimensionless form. The definitions of the compressibility factor

$$
\begin{equation*}
z=p v \mid \boldsymbol{R} T \tag{3}
\end{equation*}
$$

the dimensionless coefficients

$$
\begin{equation*}
A=a p /(\boldsymbol{R} T)^{2}, \quad B=b p / R T, \quad C=c p / \boldsymbol{R} T, \quad D=d p / \boldsymbol{R} T \tag{4}
\end{equation*}
$$

and the quantities

$$
\begin{equation*}
W=w_{(}^{\prime}(p \mid R T)^{2}, \quad C_{1}=c_{1}(p \mid R T), \quad C_{2}=c_{2}(p / R T)^{2} \tag{5}
\end{equation*}
$$

are used to transform Eq. (1) to

$$
\begin{equation*}
A(z-B)+W(z-B-1)=0 \tag{6}
\end{equation*}
$$

and Eq. (2) to

$$
\begin{equation*}
W=z^{2}+C_{1} z+C_{2} . \tag{7}
\end{equation*}
$$

Table I
Coefficients c_{1} and c_{2}, Eq. (2)

Authors	c_{1}	c_{2}	Refs
van der Waals (1873)	0	0	2
Redlich and Kwong (1949)	b	0	3
Redlich, Kwong and Soave (1972)	b	0	4
Peng and Robinson (1976)	$2 b$	$-b^{2}$	5
Schmidt and Wenzel (1980)	$(1+3 \omega) b-3(1) b^{2}$	6	
Yu and Lu (1987)	$u b$	$(u-3) b^{2}$	7^{a}
Harmens and Knapp (1980)	$C b$	$-(C-1) b^{2}$	8^{b}
Martin (1979); Joffe (1987)	$2 c$	c^{2}	9,10
Adachi, Sugie and Lu (1985)	$2 c$	$-c^{2}$	11
Patel and Teja (1982)	$b \cdots c$	$-b c$	12
Valderrama and Cisternas (1986)	$b-c$	$-b c$	13
Adachi, Lu and Sugie (1983)	$-c \cdots d$	$c d$	14^{c}

[^0]The combination of Eqs (6) and (7) gives

$$
\begin{equation*}
z^{3}+\left(C_{1}-B-1\right) z^{2}+\left[A-(1+B) C_{1}+C_{2}\right] z-A B-(1+B) C_{2}=0 \tag{8}
\end{equation*}
$$

which is the general formula for the compressibility factor calculated from the EOS satisfying Eqs (1) and (2).

Commonly the coefficients of the EOS are calculated from the critical properties of the fluid, i.e.

$$
\begin{equation*}
a=A_{0} \frac{\left(\boldsymbol{R} T_{\mathrm{c}}\right)^{2}}{p_{\mathrm{c}}} F, \quad b=B_{0} \frac{\boldsymbol{R} T_{\mathrm{c}}}{p_{\mathrm{c}}}, \quad c=C_{0} \frac{\boldsymbol{R} T_{\mathrm{c}}}{p_{\mathrm{c}}}, \quad d=D_{0} \frac{\boldsymbol{R} T_{\mathrm{c}}}{p_{\mathrm{c}}} \tag{9}
\end{equation*}
$$

Their dimensionless form is

$$
\begin{equation*}
A=A_{0} F \frac{p_{\mathrm{r}}}{T_{\mathrm{r}}^{2}}, \quad B=B_{0} \frac{p_{\mathrm{r}}}{T_{\mathrm{r}}}, \quad C=C_{0} \frac{p_{\mathrm{r}}}{T_{\mathrm{r}}}, \quad D=D_{0} \frac{p_{\mathrm{r}}}{T_{\mathrm{r}}} \tag{10}
\end{equation*}
$$

Table II contains expressions for the coefficients A_{0}, B_{0}, C_{0} and D_{0}. The quantity F represents the temperature dependence of the coefficient a. The common formula for F is

$$
\begin{equation*}
F=\left[1+f\left(1-T_{\mathrm{r}}^{1 / 2}\right)\right]^{2} \tag{ll}
\end{equation*}
$$

The expressions for the coefficients F and f are summarized in Table III.

Thermodynamic Departure Functions

The thermodynamic function of a real fluid is calculated from a reference value for an ideal gas and a departure function. This is evaluated with the aid of an EOS. The cubic EOS are explicit in pressure and the departure functions are therefore derived on the basis of the Helmholz departure function

$$
\begin{equation*}
A_{\mathrm{d}}=\int_{\infty}^{v}\left(-p+\frac{R T}{v}\right) \mathrm{d} v+R T \ln \frac{p v}{R T} . \tag{12}
\end{equation*}
$$

Substitution for p from Eq. (1) and integration yields

$$
\begin{equation*}
\frac{A_{\mathrm{d}}}{R T}=\ln \frac{R T}{p(v-b)}+\frac{a}{R T} \int_{\infty}^{v} \frac{\mathrm{~d} v}{w} \tag{13}
\end{equation*}
$$

For the van der Waals equation it follows

$$
\begin{equation*}
\frac{A_{\mathrm{d}}}{R T}=\ln \frac{R T}{p(v-b)}-\frac{a}{R T v} \tag{14}
\end{equation*}
$$

The integral in Eq. (13) can be solved after substituting from Eq. (2). The result is

$$
\begin{equation*}
\int_{\infty}^{v} \frac{\mathrm{~d} v}{w}=-\frac{1}{k} \ln \frac{2 v+c_{1}+k}{2 v+c_{1}-k}=-i \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\left(c_{1}^{2}-4 c_{2}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

The symbols i and k are used to simplify the notation. The molar Helmholz departure

Table II

Coefficients A_{0}, B_{0}, C_{0} and D_{0}, Eq. (9)

Refs Coefficients

$$
\begin{array}{ll}
2 & A_{0}=27 / 64, B_{0}=1 / 8 \\
3 & A_{0}=0.42748, B_{0}=0.08664 \\
4 & A_{0}=0.42748, B_{0}=0.08664 \\
5 & A_{0}=0.45724, B_{0}=0.07780 \\
6 & A_{0}=\left[1-\zeta_{\mathrm{c}}(1-\beta)\right]^{3}, B_{0}=\beta \zeta_{\mathrm{c}}, \zeta_{\mathrm{c}}=1 /[3(1+\beta \omega)] \\
7 & A_{0}=0.4683-0.03783 \omega+0.00752 \omega^{2}, B_{0}=0.08928-0.03409 \omega-0.00518 \omega^{2}, \\
8 & u=1.70083+0.64846 \omega+0.89593 \omega^{2} \\
8 & A_{0}=1+3 \zeta_{\mathrm{c}}\left[-1+\zeta_{\mathrm{c}}+\beta\left(1-2 \zeta_{\mathrm{c}}\right)\right]+\beta^{2} \zeta_{\mathrm{c}}^{2}, B_{0}=\beta \zeta_{\mathrm{c}}, C=1+\left(1-3 \zeta_{\mathrm{c}}\right) / \beta \zeta_{\mathrm{c}}, \\
& \zeta_{\mathrm{c}}=0.3211-0.080 \omega+0.0384 \omega^{2}, \beta=0.10770+0.7640 \zeta_{\mathrm{c}}-1.24282 \zeta_{\mathrm{c}}^{2}+ \\
& +0.96210 \zeta_{\mathrm{c}}^{3} \\
9,10 & A_{0}=27 / 64, B_{0}=0.857 z_{\mathrm{c}}-0.1674, C_{0}=1 / 8-B_{0} \\
11 & A_{0}=0.43711+0.02366 \omega+0.10538 \omega^{2}+0.10164 \omega^{3}, \\
& B_{0}=0.08779-0.02181 \omega-0.06708 \omega^{2}+0.10617 \omega^{3}, \\
12 & C_{0}=0.05060+0.04184 \omega+0.16413 \omega^{2}-0.03975 \omega^{3} \\
& A_{0}=3 \zeta_{\mathrm{c}}^{2}+B_{0}\left[3\left(1-2 \zeta_{\mathrm{c}}\right)+B_{0}\right]+C_{0}, B_{0}^{3}+\left(1+C C_{0}\right) B_{0}^{2}+3 \zeta_{\mathrm{c}}^{2} B_{0}-\zeta_{\mathrm{c}}^{3}=0, \\
13 & C_{0}=1-3 \zeta_{\mathrm{c}} \zeta_{\mathrm{c}}=0.32903-0.07680 \omega+0.02120 \omega^{2} \\
& A_{0}=0.69368-1.06344 z_{\mathrm{c}}+0.68290 z_{\mathrm{c}}^{2}-0.21044 z_{\mathrm{c}}^{3}+0.0037527 z_{\mathrm{c}}^{4}, \\
& B_{0}=0.025987+0.18075 z_{\mathrm{c}}+0.06126 z_{\mathrm{c}}^{2}, C_{0}=0.57750-1.89841 z_{\mathrm{c}}, \\
14 & z_{\mathrm{c}}=p_{\mathrm{c}} v_{\mathrm{c}} / R T_{\mathrm{c}} \\
& A_{0}=0.44869+0.04024 \omega+0.01111 \omega^{2}-0.00576 \omega^{3}, \\
& B_{0}=0.08974-0.03452 \omega+0.00330 \omega^{2}, \\
& C_{0}=0.03686+0.00405 \omega-0.01073 \omega^{2}+0.00157 \omega^{3},
\end{array}
$$

function is then expressed by

$$
\begin{equation*}
\frac{A_{\mathrm{d}}}{R T}=\ln \frac{R T}{p(v-b)}-\frac{a i}{R T} \tag{17}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
K=\frac{k p}{R T}, \quad I=\frac{1}{K} \ln \frac{2 z+C_{1}+K}{2 z+C_{1}-K} \tag{18}
\end{equation*}
$$

we may write Eq. (17) in dimensionless parameters as

$$
\begin{equation*}
A_{\mathrm{d}} / R T=-\ln (z-B)-A I \tag{19}
\end{equation*}
$$

Table III
Coefficients F and f, Eqs (9), (10) and (1I). Only f is given when Eq. (11) applies

Refs

Coefficients

$$
\begin{aligned}
& 2 \quad F=1 \\
& 3 \quad F=T_{\mathrm{r}}^{-1 / 2} \\
& 4 \quad f=0.480+1.574 \omega-0.176 \omega^{2} \\
& 5 \quad f=0.37464+1.54226 \omega-0.26992 \omega^{2} \\
& 6 \quad T_{\mathrm{r}} \leqq 1: f=f_{0}+\left(5 T_{\mathrm{r}}-3 f_{0}-1\right)^{2} / 70, T_{\mathrm{r}}>1: f=f_{0}+\left(4-3 f_{0}\right)^{2} / 70, \\
& f_{0}=0.465+1.347 \omega-0.528 \omega^{2} \\
& 7 \quad T_{\mathrm{r}} \leqq 1: \log F=f\left(f_{1}+f_{2} T_{\mathrm{r}}+f_{3} T_{\mathrm{r}}^{2}\right)\left(1-T_{\mathrm{r}}\right) \text {, } \\
& T_{\mathrm{r}}>1: \log F=f\left(f_{1}+f_{2}+f_{3}\right)\left(1-T_{\mathrm{r}}\right), \\
& \omega<0.49: f=0.40685+1.87907 \omega-0.79264 \omega^{2}+0.73752 \omega^{3} \text {, } \\
& f_{1}=0.53684, f_{2}=-0.39244, f_{3}=0.26507 \text {, } \\
& 0.49<\omega<1: f=0.58198-0.17142 \omega+1.84441 \omega^{2}-1.19047 \omega^{3} \text {, } \\
& f_{1}=0.79355, f_{2}=-0.53409, f_{3}=0.37273 \\
& 8 \\
& T_{\mathrm{r}} \leqq 1: F=\left[1+f_{1}\left(1-T_{\mathrm{r}}^{1 / 2}\right)-f_{2}\left(1-T_{\mathrm{r}}^{-1}\right)\right]^{2} \text {, } \\
& T_{\mathrm{r}}>1: F=1-(0.6258+1.5227 \omega) \ln T_{\mathrm{r}}+(0.1533+0.41 \omega)\left(\ln T_{\mathrm{r}}\right)^{2} \text {, } \\
& \omega \leqq 0.2: f_{1}=0.50+0.27767 \omega+2.17225 \omega^{2}, f_{2}=-0.22+0.338 \omega-0.845 \omega^{2} \text {, } \\
& \omega>0.2: f_{1}=0.41311+1.14657 \omega, f_{2}=0.0118 \\
& \text { 9. } 10 \quad T_{\mathrm{r}} \leqq 1: f=0.49950+1.5618 \omega-0.1373 \omega^{2}+0.13904\left(T_{\mathrm{r}}-0.7\right)+ \\
& +0.64344\left(T_{\mathrm{r}}-0.7\right)^{2} \\
& f=0.44060+1.7039 \omega-1.7290()^{2}+0.9929 \omega^{3} \\
& f=0.42241+1.30982 \omega-0.29594 \omega^{2} \\
& f=-6.608+70.43 z_{\mathrm{c}}-159.0 z_{\mathrm{c}}^{2} \\
& f=0.4070+1.3787 \omega-0.2933 \omega^{2}
\end{aligned}
$$

* Note that the formula for i or I cannot be directly applied to the van der Waals equation for which $i=1 / v$ and $I=1 / z$ (see Eq. (14)).

The molar entropy departure function is calculated from the equation

$$
\begin{equation*}
S_{\mathrm{d}}=\int_{\infty}^{v}\left[\left(\frac{\partial p}{\partial T}\right)_{\mathrm{v}}-\frac{R}{v}\right] \mathrm{d} v+\boldsymbol{R} \ln \frac{p v}{R T} . \tag{20}
\end{equation*}
$$

Eq. (1) yields

$$
\begin{equation*}
\frac{1}{\boldsymbol{R}}\left(\frac{\partial p}{\partial T}\right)_{\mathrm{v}}=\frac{1}{v-b}-\frac{1}{\boldsymbol{R} w}\left(\frac{\partial a}{\partial T}\right)_{\mathrm{v}} \tag{21}
\end{equation*}
$$

which is substituted in Eq. (20) and the integral is solved to give

$$
\begin{equation*}
\frac{S_{\mathrm{d}}}{\boldsymbol{R}}=\ln \frac{p(v-b)}{R T}+\frac{i}{R}\left(\frac{\partial a}{\partial T}\right)_{\mathrm{v}} \tag{22}
\end{equation*}
$$

The temperature dependence of the coefficient a is represented by F from Eq. (9) and given in Table III. In terms of F we have at $v=$ const.

$$
\begin{equation*}
\frac{1}{\boldsymbol{R}} \frac{\partial a}{\partial T}=\frac{A_{0}}{\boldsymbol{R}} \frac{\left(\boldsymbol{R} T_{\mathrm{c}}\right)^{2}}{p_{\mathrm{c}}} \frac{\partial F}{\partial T}=\frac{a}{\boldsymbol{R} F} \frac{\partial F}{\partial T}=A \frac{\boldsymbol{R} T}{p} \frac{T_{\mathrm{r}}}{F} \frac{\partial F}{\partial T_{\mathrm{r}}} \tag{23}
\end{equation*}
$$

Therefore Eq. (22) becomes

$$
\begin{equation*}
\frac{S_{\mathrm{d}}}{\boldsymbol{R}}=\ln \frac{p(v-b)}{\boldsymbol{R} T}+\frac{a i}{\boldsymbol{R} F} \frac{\partial F}{\partial T}=\ln (z-B)+A I \frac{T_{\mathrm{r}}}{F} \frac{\partial F}{\partial T_{\mathrm{r}}} \tag{24}
\end{equation*}
$$

and if Eq. (II) applies, then

$$
\begin{equation*}
\frac{S_{\mathrm{d}}}{R}=\ln (z-B)-\frac{A I f T_{\mathrm{r}}^{1 / 2}}{1+f\left(1-T_{\mathrm{r}}^{1 / 2}\right)} \tag{25}
\end{equation*}
$$

For mixtures, the expression for the derivative $\partial a / \partial T$ depends on the mixing rule used. The common mixing rule is

$$
\begin{equation*}
a=\sum_{i} \sum_{j} x_{i} x_{j} a_{i j}, \quad b=\sum_{j} x_{j} h_{j} . \quad i=\sum_{j} x_{j} c_{j}, \quad d=\sum_{j} x_{j} d_{\mathrm{j}}, \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i j}=\left(1-k_{i j}\right)\left(a_{i} a_{\mathrm{j}}\right)^{1 / 2} . \tag{27}
\end{equation*}
$$

When Eqs (26) and (27) hold, then using Eq. (9) the following expression, valid at
constant volume and composition, may be derived

$$
\begin{equation*}
\frac{\hat{c} a}{\partial T}=\sum_{i} \sum_{j} x_{\mathrm{i}} x_{\mathrm{j}}\left(1-k_{\mathrm{ij}}\right)\left(a_{\mathrm{i}} a_{\mathrm{j}}\right)^{1 / 2}\left(\frac{1}{F_{\mathrm{i}}^{1 / 2}} \frac{\partial F_{\mathrm{i}}^{1 / 2}}{\partial T}+\frac{1}{F_{\mathrm{j}}^{1 / 2}} \frac{\partial F_{\mathrm{j}}^{1 / 2}}{\partial T}\right) \tag{28}
\end{equation*}
$$

and when Eq. (1/) is valid, then

$$
\begin{gather*}
\frac{\hat{c} a}{\hat{c} T}=-\frac{1}{2 T^{1 / 2}} \sum_{i} \sum_{j} x_{\mathrm{i}} x_{\mathrm{j}}\left(1-k_{\mathrm{ij}}\right)\left(a_{\mathrm{i}} a_{\mathrm{j}}\right)^{1 / 2}\left(\frac{f_{\mathrm{i}} T_{\mathrm{ci}}^{-1 / 2}}{1+f_{\mathrm{i}}\left[1-\left(T / T_{\mathrm{ci}}\right)^{1 / 2}\right]}+\right. \\
\left.+\frac{f_{\mathrm{j}} T_{\mathrm{cj}}^{-1 / 2}}{1+f_{\mathrm{j}}\left[1-\left(T / T_{\mathrm{c} \mathrm{j}}\right)^{1 / 2}\right]}\right) \tag{29}
\end{gather*}
$$

Other departure functions are derived from A_{d} and S_{d} and are summarized in Tabie IV.

To illustrate the use of the expressions suggested so far, the iteration formula for the equilibrium vapor pressure, based on a cubic EOS, will now be derived.

Table IV

Departure functions

$$
\begin{gathered}
\frac{A_{\mathrm{d}}}{R T}=-\ln (z-B)-A I \\
\frac{S_{\mathrm{d}}}{R}=\ln (z-B)+A I \frac{T_{\mathrm{r}}}{F} \frac{\partial F}{\partial T_{\mathrm{r}}}= \\
=\ln (z-B)-\frac{A I I T_{\mathrm{r}}^{1 / 2}}{1+f\left(1-T_{\mathrm{r}}^{1 / 2}\right)} \\
\frac{H_{\mathrm{d}}}{R T} \\
=z-1+A I\left(\frac{T_{\mathrm{r}}}{F} \frac{\partial F}{\partial T_{\mathrm{r}}}-1\right)= \\
= \\
\frac{G_{\mathrm{d}}}{R T}=\ln \phi=-1-\frac{A I(1+f)}{1+f\left(1-\frac{T_{\mathrm{r}}^{1 / 2}}{1 / 2}\right.} \\
\frac{C_{\mathrm{rd}}}{R}=A I \frac{T_{\mathrm{r}}^{2}}{f} \frac{\partial^{2} F}{\partial T_{\mathrm{r}}^{2}}+\frac{\left[(z-B)^{-1}-T_{\mathrm{r}}(W F)\right.}{(z-B)^{-2}-A W^{2}\left(2 z+C_{1}\right)}-1
\end{gathered}
$$

The Newton iteration formula for the pressure is

$$
\begin{equation*}
p^{\prime}=p-\frac{\varphi(p)}{\mathrm{d} \varphi(p) / \mathrm{d} p} \tag{30}
\end{equation*}
$$

The pressure function $\varphi(p)$ follows from the condition of vapor-liquid equilibrium, i.e.

$$
\begin{equation*}
\varphi(p)=\ln \phi_{\mathrm{v}}-\ln \phi_{\mathrm{t}} \tag{31}
\end{equation*}
$$

and its derivative is therefore

$$
\begin{equation*}
\frac{\mathrm{d} \varphi(p)}{\mathrm{d} p}=\frac{z_{\mathrm{v}}-z_{1}}{p} \tag{32}
\end{equation*}
$$

In Table IV we find

$$
\begin{equation*}
\ln \phi=z-1-\ln (z-B)-A I . \tag{33}
\end{equation*}
$$

The combination of Eqs (30) to (33) gives

$$
\begin{equation*}
p^{\prime}=p \frac{\ln \left[\left(z_{v}-B\right) /\left(z_{1}-B\right)\right]+A\left(I_{\mathrm{v}}-I_{1}\right)}{z_{\mathrm{v}}-z_{1}} \tag{34}
\end{equation*}
$$

This general expression is now applied to the EOS chosen. From Table I, the coefficients c_{1} and c_{2} are found. They are made dimensionless using Eq. (5) and the formulae for B, C and D are substituted from Eq. (10). The necessary values of B_{0} etc. are found in Table II. The expression for the dimensionless coefficient A follows again from Eq. (10) with A_{0} from Table II and the quantity F given in Table III or by Eq. (11) with the appropriate expression for f from Table III. Now the pressure is estimated, the dimensionless EOS coefficients are calculated and substituted in Eq. (8). The z_{v} and z_{1} values are then calculated, from which the I_{v} and I_{1} values are found. Then Eq. (34) yields a new estimate of the pressure etc.

Fugacity Coefficient of a Component in a Fluid Mixture

The fugacity coefficients of components are needed for calculating phase equilibrium in mixtures. The partial molar thermodynamic functions of the components are calculated from the mixture molar functions. To simplify notation the mixture molar functions will not be indexed.

For a general molar function e the following equation is valid

$$
\begin{equation*}
\bar{e}_{\mathrm{i}}=e+\left(\frac{\partial e}{\partial x_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{x}_{\mathrm{k}} \neq \mathrm{t}}-\sum_{j} x_{\mathrm{j}}\left(\frac{\partial e}{\partial x_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{x}_{\mathrm{k}} \neq \mathrm{j}} \tag{35}
\end{equation*}
$$

This can be transformed to

$$
\begin{align*}
& \bar{e}_{\mathrm{i}}=e+\left(\frac{\partial e}{\partial x_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathrm{k} \neq 1}}-\sum_{j} x_{\mathrm{j}}\left(\frac{\partial e}{\partial x_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathbf{k} \neq \mathrm{J}}}- \\
& \frac{(\partial e / \hat{c} v)_{\mathbf{T}, \mathrm{x}}}{(\partial p / \partial v)_{\mathrm{T}, \mathrm{x}}}\left[\left(\frac{\partial p}{\partial x_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathrm{k} \neq \mathrm{i}}}-\sum_{j} x_{\mathrm{j}}\left(\frac{\partial p}{\partial x_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathbf{k} \neq \mathrm{j}}}\right] . \tag{36}
\end{align*}
$$

As suggested by Novák et al. ${ }^{15,16}$, it is convenient to introduce an analogue to Eq. (35), which applies at constant molar volume (instead of pressure), i.e.

$$
\begin{equation*}
\tilde{p}_{\mathrm{i}}-p=\left(\frac{\partial p}{\partial x_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathrm{k} \neq \mathrm{i}}}-\sum_{j} x_{\mathrm{j}}\left(\frac{\partial p}{\partial x_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathrm{k} * \mathrm{j}}} \tag{37}
\end{equation*}
$$

This can be substituted in Eq. (36) to yield

$$
\begin{equation*}
\bar{e}_{\mathrm{i}}=e+\left(\frac{\partial e}{\partial x_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathrm{k} * \mathrm{i}}}-\sum_{j} x_{\mathrm{j}}\left(\frac{\partial e}{\partial x_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{v}, \mathrm{x}_{\mathrm{k} * \mathrm{j}}}-\frac{(\partial e / \partial v)_{\mathrm{T}, \mathrm{x}}}{(\partial p / \partial v)_{\mathrm{T}, \mathrm{x}}}\left(\tilde{p}_{\mathrm{i}}-p\right) . \tag{38}
\end{equation*}
$$

This equation may be used to calculate the partial molar departure functions. For the partial molar Helmholz departure function we get

$$
\begin{equation*}
\bar{A}_{\mathrm{di}}=-\int_{\infty}^{v}\left(\tilde{p}_{\mathrm{i}}-\frac{R T}{v}\right) \mathrm{d} v-R T \ln \frac{p v}{R T}+\frac{p\left(\tilde{p}_{\mathrm{i}}-p\right)}{(\partial p / \partial v)_{\mathrm{T}, \mathrm{x}}}, \tag{39}
\end{equation*}
$$

from which

$$
\begin{equation*}
\ln \phi_{\mathrm{i}}=-\frac{1}{R T} \int_{\infty}^{v}\left(\tilde{p}_{\mathrm{i}}-\frac{R T}{v}\right) \mathrm{d} v-\ln \frac{p v}{R T}+\frac{p v}{R T}-1 . \tag{40}
\end{equation*}
$$

Substitution of Eq. (1) in Eq. (37) gives

$$
\begin{equation*}
\tilde{p}_{\mathrm{i}}=\frac{R T}{v-b}+\frac{R T}{(v-b)^{2}}\left(\tilde{b}_{\mathrm{i}}-b\right)-\frac{\tilde{a}_{\mathrm{i}}}{w}+\frac{a}{w}\left(\tilde{w}_{2}-w\right), \tag{41}
\end{equation*}
$$

where an analogue of Eq. (37) defines the quantities $\tilde{a}_{\mathrm{i}}, \tilde{b}_{\mathrm{i}}$ and \tilde{w}_{i}. Substituting from Eq. (41) in Eq. (40) and integrating yields

$$
\begin{equation*}
\ln \phi_{\mathrm{i}}=\ln \frac{R T}{p(v-b)}+\frac{\tilde{b}_{\mathrm{i}}-b}{v-b}-\frac{\tilde{a}_{\mathrm{i}}}{\boldsymbol{R} T} i-\frac{a}{R T} \int_{\infty}^{v} \frac{\tilde{w}_{\mathbf{i}}-w}{w^{2}} \mathrm{~d} v . \tag{42}
\end{equation*}
$$

If a and b are defined by Eqs (26) and (27), then

$$
\begin{equation*}
\tilde{a}_{\mathrm{i}}=2 \sum_{j} x_{\mathrm{j}} a_{\mathrm{ij}}-a, \quad \tilde{b}_{\mathrm{i}}=b_{\mathrm{i}} \tag{43}
\end{equation*}
$$

and according to Eq. (2) we have

$$
\begin{equation*}
\tilde{w}_{i}-w=v\left(\tilde{c}_{1 \mathrm{i}}-c_{1}\right)+\tilde{c}_{2 \mathrm{i}}-c_{2}=v d_{1}+d_{2} \tag{44}
\end{equation*}
$$

where the symbols d_{1} and d_{2} are introduced to simplify the form of the equations. The integral in Eq. (42) has an analytical solution. After rearrangement and rewriting the equation with the aid of the dimensionless quantities the final form of the expression for $\ln \phi_{i}$ is

$$
\begin{equation*}
\ln \phi_{\mathrm{i}}=-\ln (z-B)+\frac{B_{\mathrm{i}}}{B}(z-1)-\frac{A}{K^{2}}\left(\frac{L}{W}-I M\right) \tag{45}
\end{equation*}
$$

with

$$
\begin{gather*}
L=\left[J-K^{2}\left(\frac{B_{\mathrm{i}}}{B}-1\right)\right] z+2 C_{2} D_{1}-C_{1} D_{2}, \\
M=J-\left(\delta_{\mathrm{i}}-1\right) K^{2}, \quad J=C_{1} D_{1}-2 D_{2}, \tag{46}\\
\delta_{\mathrm{i}}=2\left(\sum_{j} x_{\mathrm{j}} a_{\mathrm{ij}}\right) / a=2\left(a_{\mathrm{i}}^{1 / 2} / a\right) \sum_{j} x_{\mathrm{j}}\left(1-k_{\mathrm{ij}}\right) a_{\mathrm{j}}^{1 / 2}= \\
=2\left(\sum_{j} x_{\mathrm{j}} A_{\mathrm{ij}}\right) / A=2\left(A_{\mathrm{i}}^{1 / 2} / A\right) \sum_{j} x_{j}\left(1-k_{\mathrm{ij}}\right) A_{\mathrm{j}}^{1 / 2}
\end{gather*}
$$

The formula for δ_{i} is here based on Eqs (26) and (27). The expressions for D_{1} and D_{2} are summarized in Table V. Eq. (45) is a general formula for all EOS, for which Eqs (1) and (2) hold.

In case the coefficients c_{1} and c_{2} are multiples of b, Eq. (45) can be simplified. Then the following relations are valid

$$
\begin{equation*}
c_{1}=K_{1} b, \quad c_{2}=K_{2} b^{2} \tag{47}
\end{equation*}
$$

Expressions for the dimensionless coefficients K_{1} and K_{2} are given in Table V. From Eqs (5), (16), (18), (44) and (47) follows

$$
\begin{gather*}
K=\left(K_{1}^{2}-4 K_{2}\right)^{1 / 2} B, \quad D_{1}=K_{1}\left(B_{\mathrm{i}}-B\right), \quad D_{2}=2 K_{2} B\left(B_{\mathrm{i}}-B\right), \\
I=\left(K_{1}^{2}-4 K_{2}\right)^{-1 / 2} B^{-1} \ln \frac{2 z+\left[K_{1}+\left(K_{1}^{2}-4 K_{2}\right)^{1 / 2}\right] B}{2 z+\left[K_{1}-\left(K_{1}^{2}-4 K_{2}\right)^{1 / 2}\right] B} \tag{48}
\end{gather*}
$$

and substituting in Eqs (45) and (46) yields after rearrangement

$$
\begin{equation*}
\ln \phi_{\mathrm{i}}=\left(B_{\mathrm{i}} / B\right)(z-1)-\ln (z-B)+A I\left(B_{\mathrm{i}} / B-\delta_{\mathrm{i}}\right) \tag{49}
\end{equation*}
$$

This is equivalent to Eq. $(5-8.12)$ in the book of Reid et al. ${ }^{1}$. This equation allows to write expressions which may be simpler than those published by authors of the EOS. E.g. Yu and Lu^{7} suggest a very complicated formula for $\ln \phi_{\mathrm{i}}$, which requires a considerable effort for its derivation. According to the procedure proposed here, we would find from Table V, that the coefficients K_{1} and K_{2} and hence Eq. (49) are applicable. The expressions for K_{1} and K_{2} are used in the formula for I, Eq. (48), and this gives after substituting in Eq. (49)

$$
\ln \phi_{\mathrm{i}}=\frac{B_{\mathrm{i}}}{B}(z-1)-\ln (z-B)+\frac{A}{K}\left(\frac{B_{\mathrm{i}}}{B}-\delta_{\mathrm{i}}\right) \ln \frac{2 z+u B+K}{2 z+u B-K},
$$

with

$$
K=\left[u^{2}-4(u-3)\right]^{1 / 2} B, \quad u=c / b+3
$$

and δ_{i} defined in Eq. (46). It can be shown that the equations for $\ln \phi_{\mathrm{i}}$ are equivalent.

Table V
Coefficients $K_{1,2}$ and the differences $D_{1}=\widetilde{C}_{1 i}-C_{1}$ and $D_{2}=\widetilde{C}_{2 i}-C_{2}$

Refs	K_{1}	K_{2}	D_{1}	D_{2}
3	0	0	0	0
4	1	0	$B_{\mathrm{i}}-B$	0
5	2	0	$B_{\mathrm{i}}-B$	0
6	$1+3 \omega$	-1	$2\left(B_{\mathrm{i}}-B\right)$	$-2 B\left(B_{\mathrm{i}}-B\right)$
7	u	$u-3$	$(1+3 \omega)\left(B_{\mathrm{i}}-B\right)$	$-6 \omega B\left(B_{\mathrm{i}}-B\right)$
8	C	$1-C$	$C\left(B_{\mathrm{i}}-B\right)$	$2(u-3) B\left(B_{\mathrm{i}}-B\right)$
9,10	-	-	$2\left(C_{\mathrm{i}}-C\right)$	$2 B\left(B_{\mathrm{i}}-B\right)(1-C)$
11	-	-	$2\left(C_{\mathrm{i}}-C\right)$	$2 C\left(C_{\mathrm{i}}-C\right)$
12	-	-	$B_{\mathrm{i}}-B+C_{\mathrm{i}}-C$	$-2 C\left(C_{\mathrm{i}}-C\right)$
		-	$B_{\mathrm{i}}-B+C_{\mathrm{i}}-C$	$\left.-\left(B_{\mathrm{i}}-B\right) C-B\right) C-$
13	-	-	$-\left(C_{\mathrm{i}}-C\right)$	
14	-	-	$-C_{\mathrm{i}}+C+D_{\mathrm{i}}-D$	$-\left(C_{\mathrm{i}}-C\right) D-C$
			$C\left(D_{\mathrm{i}}-D\right)$	

[^1]For the bubble and dew point calculations, the partial derivatives of $\ln \phi_{i}$ with respect to temperature and pressure, respectively, are needed at constant composition and pressure and temperature respectively. We shall represent here both the temperature and pressure by a common symbol l. Then from Eq. (45) follows

$$
\begin{gather*}
\frac{\partial \ln \phi_{\mathrm{i}}}{\partial l}=-\frac{1}{z-B}\left(\frac{\partial z}{\partial l}-\frac{\partial B}{\partial l}\right)+\frac{B_{\mathrm{i}}}{B} \frac{\partial z}{\partial l}-\left(\frac{L}{W}-I M\right)\left(\frac{1}{K^{2}} \frac{\partial A}{\partial l}-\frac{2 A}{K^{3}} \frac{\partial K}{\partial l}\right)- \\
\frac{A}{K^{2}}\left(\frac{1}{W} \frac{\partial L}{\partial l}-\frac{L}{W^{2}} \frac{\partial W}{\partial l}-I \frac{\partial M}{\partial l}-M \frac{\partial I}{\partial l}\right) \tag{50}
\end{gather*}
$$

where

$$
\begin{gather*}
\frac{\partial J}{\partial l}=C_{1} \frac{\partial D_{1}}{\partial l}+D_{1} \frac{\partial C_{1}}{\partial l}-2 \frac{\partial D_{2}}{\partial l} \\
\frac{\partial L}{\partial l}=\left[J+K^{2}\left(\frac{B_{\mathrm{i}}}{B}-1\right)\right] \frac{\partial z}{\partial l}+z\left[\frac{\partial J}{\partial l}+2\left(\frac{B_{\mathrm{i}}}{B}-1\right) K \frac{\partial K}{\partial l}\right]+ \\
+2\left(C_{2} \frac{\partial D_{1}}{\partial l}+D_{1} \frac{\partial C_{2}}{\partial l}\right)-C_{1} \frac{\partial D_{2}}{\partial l}-D_{2} \frac{\partial C_{1}}{\partial l} \\
\frac{\partial M}{\partial l}=\frac{\partial J}{\partial l}-2\left(\delta_{\mathrm{i}}-1\right) K \frac{\partial K}{\partial l}-K^{2} \frac{\partial \delta_{\mathrm{i}}}{\partial l} \tag{51}
\end{gather*}
$$

The derivatives of $D_{1,2}$ can be found after substitution from Table V. The general expressions for the partial derivatives of $A, B, C_{1}, C_{2}, K, I, z$ and δ_{i} with respect to temperature and pressure are given in Table VI.

For the more common EOS, Eq. (49) holds. At constant pressure and composition the partial derivative of $\ln \phi_{i}$ with respect to temperature is
$\frac{\partial \ln \phi_{\mathrm{i}}}{\partial T}=\frac{B_{\mathrm{i}}}{B_{i}} \frac{\partial z}{\partial T}-\frac{1}{z-B}\left(\frac{\partial z}{\partial T}+\frac{B}{T}\right)+\left(\frac{B_{\mathrm{i}}}{B}-\delta_{\mathrm{i}}\right)\left(I \frac{\partial A}{\partial T}+A \frac{\partial I}{\partial T}\right)+A I \frac{\partial \delta_{\mathrm{i}}}{\partial T}$.

The derivatives on the righthand side of this equation are given in Table VI, but $\partial z / \partial T$ may be expressed as

$$
\frac{\partial z}{\partial T}=\frac{\begin{array}{c}
(B-z)\left(a^{-1} \partial a / \partial T-2 T^{-1}\right)-\left\{z^{2}\left(1-K_{1}\right)+z\left[K_{1}+2 B\left(K_{1}-K_{2}\right)\right]+\right. \\
\left.+A+K_{2} B(2+3 B)\right\} B T^{-1} \tag{53}
\end{array}}{z\left\{3 z+2\left[B\left(K_{1}-1\right)-1\right]\right\}+A-B\left[K_{1}(1+B)-K_{2} B\right]}
$$

and $\partial I / \partial T$ as

$$
\begin{equation*}
\frac{\partial I}{\partial T}=\frac{I}{T}-4 \frac{z / T+\partial z / \partial T}{\left(2 z+K_{1} B\right)^{2}-\left(K_{1}^{2}-4 K_{2}\right) B^{2}} \tag{54}
\end{equation*}
$$

At constant composition and temperature we have

$$
\begin{equation*}
\frac{\partial \ln \phi_{\mathrm{i}}}{\partial p}=\frac{B_{\mathrm{i}}}{B} \frac{\partial z}{\partial p}-\frac{\partial z / \partial p-B / p}{z-B}+\left(\frac{B_{\mathrm{i}}}{B}-\delta_{\mathrm{i}}\right)\left(\frac{I}{p}+\frac{\partial I}{\partial p}\right) A \tag{55}
\end{equation*}
$$

Table VI

Partial derivatives of $A, B, C_{1}, C_{2}, K, I, z$ and δ_{i} with respect to temperature and pressure

Constant pressure and composition

$$
\begin{gathered}
\frac{\partial A}{\partial T}=A\left(\frac{1}{a} \frac{\partial a}{\partial T}-\frac{2}{T}\right) \\
\frac{1}{a} \frac{\partial a}{\partial T}=\frac{1}{a} \sum_{i} \sum_{j} x_{\mathrm{i}} x_{\mathrm{j}}\left(1-k_{\mathrm{ij}}\right)\left(a_{\mathrm{i}} a_{\mathrm{j}}\right)^{1 / 2}\left(F_{\mathrm{i}}^{-1 / 2} \frac{\partial F_{\mathrm{i}}^{1 / 2}}{\partial T}+F_{\mathrm{j}}^{-1 / 2} \frac{\partial F_{\mathrm{j}}^{1 / 2}}{\partial T}\right)= \\
=\frac{1}{2 a} \sum_{i} \sum_{j} x_{\mathrm{i}} x_{\mathrm{j}}\left(1-k_{\mathrm{ij}}\right)\left(a_{\mathrm{i}} a_{\mathrm{j}}\right)^{1 / 2}\left(F_{\mathrm{i}}^{-1} \frac{\partial F_{\mathrm{i}}}{\partial T}+F_{\mathrm{j}}^{-1} \frac{\partial F_{\mathrm{j}}}{\partial T}\right)= \\
=-\left(2 A T^{1 / 2}\right)^{-1} \sum_{i} \sum_{j} x_{\mathrm{i}} x_{\mathrm{j}}\left(1-k_{\mathrm{ij}}\right)\left(A_{\mathrm{i}} A_{\mathrm{j}}\right)^{1 / 2} \\
\cdot\left(\frac{f_{\mathrm{j}} T_{\mathrm{cj}}^{-1 / 2}}{1+f_{\mathrm{i}}\left[1-\left(T / T_{\mathrm{ci}}\right)^{1 / 2}\right]}+\frac{f_{\mathrm{ci}} T^{-1 / 2}}{1+f_{\mathrm{j}}\left[1-\left(T / T_{\mathrm{cj}}\right)^{1 / 2}\right]}\right) \\
\frac{\partial B}{\partial T}=-\frac{B}{T}, \frac{\partial C_{1}}{\partial T}=-\frac{C_{1}}{T}, \frac{\partial C_{2}}{\partial T}=-2 \frac{C_{2}}{T}, \frac{\partial K}{\partial T}=-\frac{K}{T} \\
\frac{\partial z}{\partial T}=\frac{(B-z)}{\partial T}=\frac{I}{T}-4 \frac{z / T+\partial z / \partial T}{\left(2 z+C_{1}\right)^{2}-K^{2}} \\
\frac{\left(B / \partial T-\left[z\left(z+C_{1}\right)+A+C_{2}\right] B / T-(z-B-1)\left(z C_{1}+2 C_{2}\right) / T\right.}{2\left[3 z+2\left(C_{1}-B-1\right)\right]+A-(1+B) C_{1}+C_{2}} \\
\frac{\partial \delta_{\mathrm{i}}}{\partial T}=\left(a_{\mathrm{i}}^{-1 / 2} \frac{\partial a_{\mathrm{i}}^{1 / 2}}{\partial T}-a^{-1} \frac{\partial a}{\partial T}\right) \delta_{\mathrm{i}}+2 \frac{a_{\mathrm{i}}^{1 / 2}}{a} \sum_{j} x_{\mathrm{j}}\left(1-k_{\mathrm{ij}}\right) \frac{\partial a_{\mathrm{j}}^{1 / 2}}{\partial T} \\
\frac{\partial a_{\mathrm{i}}^{1 / 2}}{\partial T}=\left(\frac{a_{\mathrm{i}}}{F_{\mathrm{i}}}\right)^{1 / 2} \frac{\partial F_{\mathrm{i}}^{1 / 2}}{\partial T}=-\left(\frac{a_{\mathrm{i}}}{T}\right)^{1 / 2} \frac{f_{\mathrm{i}} T_{\mathrm{ci}}^{1 / 2}}{1+f_{\mathrm{i}}\left[1-\left(T / T_{\mathrm{ci}}\right)^{1 / 2}\right]}
\end{gathered}
$$

Table Vi
(Continued)

Constant temperature and composition

$$
\begin{gathered}
\frac{\partial A}{\partial p}=\frac{A}{p}, \quad \frac{\partial B}{\partial p}=\frac{B}{p}, \quad \frac{\partial C_{1}}{\partial p}=\frac{C_{1}}{p}, \frac{\partial C_{2}}{\partial p}=2 \frac{C_{2}}{p}, \frac{\partial K}{\partial p}=\frac{K}{p} \\
\frac{\partial I}{\partial p}=-\frac{I}{p}+4 \frac{z / p-\partial z / \partial p}{\left(2 z+C_{1}\right)^{2}-K^{2}} \\
\frac{\partial z}{\partial p}=\frac{1}{p} \frac{A(B-z)+B\left[z\left(z+C_{1}\right)+A+C_{2}\right]+(1+B-z)\left(z C_{1}+2 C_{2}\right)}{z\left[3 z+2\left(C_{1}-B-1\right)\right]+A-(1+B) C_{1}+C_{2}} \\
\frac{\partial \delta_{1}}{\partial p}=0
\end{gathered}
$$

with
$\frac{\partial z}{\hat{c} p}=\frac{1}{p} \frac{A(B-z)+B\left\{z^{2}\left(1-K_{1}\right)+z\left[K_{1}+2 B\left(K_{1}-K_{2}\right)\right]+A+K_{2} B(2+3 B)\right\}}{z\left\{3 z+2\left[B\left(K_{1}-1\right)-1\right]\right\}+A-B\left[(1+B) K_{1}-K_{2} B\right]}$
and

$$
\begin{equation*}
\frac{\partial I}{\partial p}=-\frac{I}{p}+4 \frac{z / p-\partial z / \partial p}{\left(2 z+K_{1} B\right)^{2}-\left(K_{1}^{2}-4 K_{2}\right) B^{2}} \tag{57}
\end{equation*}
$$

The equations given in this paper facilitate the treatment and comparison of different cubic EOS. E.g. Patel and Teja ${ }^{14}$ suggest this formula for the fugacity coefficient

$$
\ln \phi=z-1-\ln (z-B)-\frac{a}{2 R T N} \ln \frac{z+M}{z+Q}
$$

where

$$
\begin{gathered}
B=\frac{b p_{\mathrm{c}}}{R T_{\mathrm{c}}} . \quad M=\left(\frac{b+c}{2}-N\right) \frac{p}{\boldsymbol{R} T}, \quad N=\left[b c+\frac{(b+c)^{2}}{2}\right]^{-1 / 2}, \\
Q=\left(\frac{b+c}{2}+N\right) \frac{p}{\boldsymbol{R} T}
\end{gathered}
$$

and $a . b, c$ are the EOS coefficients. In our treatment, the Eq. (33) applies

$$
\ln \phi=z-1-\ln (z-B)-A I
$$

The quantity A is defined in Eq. (4) and I in Eq. (18). We find the formula for K from Eqs (16) and (18). The necessary expressions for c_{1} and c_{2} are given in Table I. Then

$$
K=\left[(B+C)^{2}+4 B C\right]^{1 / 2} \quad \text { and } \quad I=\frac{1}{K} \ln \frac{2 z+B+C+K}{2 z+B+C-K}
$$

It can be seen that there is an error in the definition of the coefficient B (see Eq. (4)). The quantity N should correspond to our $k / 2$, i.e.

$$
\frac{k}{2}=\left[\left(\frac{b+c}{2}\right)^{2}+b c\right]^{1 / 2}
$$

Therefore, the sign of the exponent in the definition of N is wrong and the denominator 2 should be 4. Patel and Teja ${ }^{14}$ define another quantity d as

$$
d=\left[b c+\frac{(b+c)^{2}}{4}\right]^{1 / 2}
$$

which is again $k / 2$ and, therefore, the correct expression for N. The comparison of their expression for the molar entropy departure function with our Eq. (24) shows the incorrect inclusion of pressure in their formula.

This was another example of the utility of the unified treatment, which is also useful for computer programming.

LIST OF SYMBOLS

A dimensionless coefficient, Eq. (4)
$A \quad$ molar Helmholz function, $\mathrm{J} \mathrm{mol}^{-1}$
$A_{0} \quad$ dimensionless coefficient, Eq. (9) or Table II
$a \quad$ EOS coefficient, $\mathrm{Pa} \mathrm{m}^{6} \mathrm{~mol}^{-2}$
$a_{\mathrm{ij}} \quad$ binary coefficient, Eqs (26) and (27), $\mathrm{Pa} \mathrm{m}^{6} \mathrm{~mol}^{-2}$
B dimensionless coefficient, Eq. (4)
B_{0} dimensionless coefficient, Eq. (9) or Table II
$b \quad$ EOS coefficient, $\mathrm{m}^{3} \mathrm{~mol}^{-1}$
C dimensionless coefficient, Eq. (4) or Table I
C_{0} dimensionless coefficient, Eq. (9) or Table II
$C_{\mathrm{p}} \quad$ molar heat capacity at constant pressure, $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
$C_{1,2} \quad$ dimensionless coefficients, Eq. (5)

```
\(c \quad\) EOS coefficient, \(\mathrm{m}^{3} \mathrm{~mol}^{-1}\)
\(c_{1} \quad\) coefficient, Eq. (2) or Table I, \(\mathrm{m}^{3} \mathrm{~mol}^{-1}\)
\(c_{2} \quad\) coefficient, Eq. (2) or Table I, \(\mathrm{m}^{6} \mathrm{~mol}^{-2}\)
\(D \quad\) dimensionless coefficient, Eq. (4)
\(D_{0}\) dimensionless coefficient, Eq. (9) or Table II
\(D_{1,2}\) dimensionless form of the differences from Eq. (44), see also Eq. (48) or Table V
\(d^{1,2} \quad\) EOS coefficient, \(\mathrm{m}^{3} \mathrm{~mol}^{-1}\)
\(d_{1} \quad\) difference, Eq. (44), \(\mathrm{m}^{3} \mathrm{~mol}^{-1}\)
\(d_{2} \quad\) difference, Eq. (44), \(\mathrm{m}^{6} \mathrm{~mol}^{-2}\)
\(e^{\quad \text { general molar function, } \mathrm{J} \mathrm{mol}^{-1}}\)
\(F \quad\) dimensionless coefficient, Eq. (10) or Table III
\(f\) dimensionless coefficient, Eq. (1I) or Table III
\(G \quad\) molar Gibbs function, \(\mathrm{J} \mathrm{mol}^{-1}\)
\(H \quad\) molar enthalpy, \(\mathrm{J} \mathrm{mol}^{-1}\)
\(I\) dimensionless parameter, Eq. (18)
\(i \quad\) parameter, Eq. (15), \(\mathrm{mol} \mathrm{m}^{-3}\)
\(J\) dimensionless parameter, Eq. (46)
\(K\) dimensionless parameter, Eq. (18)
\(K_{1,2}\) dimensionless coefficients, Eq. (47) or Table V
\(k\) parameter, Eq. (16)
\(k_{i j} \quad\) dimensionless binary interaction coefficient
\(L\) dimensionless parameter, Eq. (46)
\(l \quad\) temperature or pressure
\(M\) dimensionless parameter, Eq. (46)
\(p \quad\) pressure, Pa
\(R \quad\) universal gas constant, \(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\)
\(S \quad\) molar entropy, \(\mathrm{J}_{\mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}\)
\(T\) temperature, \(K\)
\(v \quad\) molar volume, \(\mathrm{m}^{3} \mathrm{~mol}^{-1}\)
W dimensionless quantity, Eq. (5)
\(w \quad\) quantity defined by Eq. (2), \(\mathrm{m}^{6} \mathrm{~mol}^{-2}\)
\(x \quad\) mole fraction
\(z \quad\) compressibility factor
\(\delta_{\mathrm{i}} \quad\) quantity defined by Eq. (46)
\(\phi \quad\) fugacity coefficient
\(\omega \quad\) acentric factor
```

Subscripts
c critical property
d departure function
$\mathrm{i}, \mathrm{j}, \mathrm{k}$ components
1 liquid phase
r reduced property
\checkmark vapor phase
Superscripts
$-\quad$ partial molar quantity
$\sim \quad$ quantity defined by an equation having the form of Eq. (37)

REFERENCES

1. Reid R. C., Prausnitz J. M., Poling B. E.: The Properties of Gases and Liquids, 4 ed. McGraw--Hill, New York 1987.
2. van der Waals J. D.: Thesis. Leiden 1873.
3. Redlich O., Kwong J. N. S.: Chem. Rev. 44, 233 (1949).
4. Soave G.: Chem. Eng. Sci. 27, 1197 (1972).
5. Peng D. Y., Robinson D. B.: Ind. Eng. Chem. Fundam. 15, 59 (1976).
6. Schmidt G., Wenzel H.: Chem. Eng. Sci. 35, 1503 (1980).
7. Yu J. M., Lu B. C. Y.: 9th International Congress of Chemical Engineering, Chemical Equipment Design and Automation, Prague, Czechoslovakia, August 31-September 4, 1987; paper C3.1.
8. Harmens A., Knapp H.: Ind. Eng. Chem. Fundam. 19, 291 (1980).
9. Martin J. J.: Ind. Eng. Chem. Fundam. 18, 81 (1979).
10. Joffe J.: Ind. Eng. Chem. Res. 26, 759 (1987).
11. Adachi Y., Sugie H., Lu B. C. Y.: J. Chem. Eng. Jpn. 18, 20 (1985).
12. Patel N. C., Teja A. S.: Chem. Eng. Sci. 37, 463 (1982).
13. Valderrama J. C., Cisternas L. A. in: Fluid Properties and Phase Equilibria for Chemical Process Design (H. Renon, Ed.), Part I, p. 431. Elsevier, Amsterdam 1986.
14. Adachi Y., Lu B. C. Y., Sugie H.: Fluid Phase Equilib. 11, 29 (1983).
15. Novák J. P.: Chem. Listy 60, 386 (1966).
16. Novák J. P.. Matouš J., Šobr J.: Chem. Listy 65, 155 (1971).

Translated by the author.

[^0]: ${ }^{"} \mathrm{Yu}$ and Lu^{7} define the EOS coefficient c as $c \cdots(u-3) b$. The use of the dimensionless $"$ simplifies the form of the equations and therefore u is used here instead of c. ${ }^{b}$ The quantity c used by Harmens and K napp ${ }^{8}$ is dimensionless and is written here as $C .{ }^{c}$ The authors ${ }^{14}$ write their EOS in terms of b_{1}, b_{2} and b_{3} which are written here as b, c and d.

[^1]: Collect. Czech. Chem. Commun. (Vol. 54) (1989)

