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From the formula proposed for the van der Waals type equations of state, general expressions 
for the compressibility factor. the departure functions and the fugacity coefficient are derived. 
Easy construction of the formula needed is possible for any of the equations listed in the paper. 
The method is applicable to other equations of this type. 

The equations of state (EOS) based on the van der Waals equation are often used 
for engineering calculations. The advantage of a generalized form of these equations 
has been recognized and the most thorough application can be found in the recent 
edition of the book by Reid et al. 1 The published cubic EOS contain up to four 
empirical coefficients. However, the generalized expressions given by Reid et al. l 

may be used only for the EOS with two coefficients. Therefore a more general proce­
dure is proposed here. Equations for the compressibility factor, the thermodynamic 
departure functions and for the fugacity coefficient of a component in a fluid mix­
ture are derived in terms of general parameters. Tables were prepared for a number 
of EOS. which give the appropriate formulae for these parameters. This enables 
easy construction of the required expression for each of the EOS listed. The method 
may be extended to further EOS of the van der Waals form. 

Compressibility Factor 

The cubic EOS of the van der Waals type can be represented by a general formula 

RT a 
p=----, 

v - b w 
(1) 

where 

(2) 

Table I summarizes various expressions for the coefficients Cl and C2 characterizing 
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different EOS. It is usually convenient to write Eq. (1) in a dimensionless form. 
The definitions of the compressibility factor 

z = pvjRT, (3) 

the dimensionless coefficients 

A = apj(RT)2, B = bpjRT, C = cpjRT, D = clp!RT (4) 

and the quantities 

(5) 

are used to transform Eq. (1) to 

A(z - B) + W(z - B-1) = 0 (6) 

and Eq. (2) to 

(7) 

TABLE I 

Coefficients ci and c2 , Eq. (2) 

Authors el c2 Refs 

van der Waals (1873) 0 0 2 
Redlich and Kwong (1949) b 0 3 
Redlich, Kwong and Soave (1972) b 0 4 
Peng and Robinson (1976) 2b _b2 5 
Schmidt and Wenzel (1980) (l + 3(') b - 3u)b2 6 
Yu and Lu (1987) ub (u--3)b2 7a 

Harmens and Knapp (1980) Cb -(C-I)b2 8b 

Martin (1979); Joffe (1987) 2c 
J 

9,10 c-

Adachi, Sugie andLu (1985) 2e _c2 11 
Patel and Teja (1982) b .- (' -he 12 
Valderrama and Cisternas (1986) b -I (' -bc 13 
Adachi, Lu and Sugie (1983) - (' -I d -- cd 14c 

{l Yu and Lu 7 define the EOS coefficient c as (' (11- 3) b. The use of the dimensionless II 

simplifies the form of the equations and therefore II is used here instead of c. b The quantity c 
used by Harmens and Knapp8 is dimensionless and is "rilten here as C. C The authors l4 write 
Iheir EOS in terms of bJ , b2 and b3 which are written here as b. c and d. 
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The combination of Eqs (6) and (7) gives 

Z3 + (e l - B-I);:2 + [A - (I + B) C l + czJ z - AB - (I + B) Cz = 0 (8) 

which is the general formula for the compressibility factor calculated from the 
EOS satisfying Eqs (1) and (2). 

Commonly the coefficients of the EOS are calculated from the critical properties 
of the fluid, i.e. 

a = Ao (RTc)2 F, b = Bo RTc , 
Pc Pc 

Their dimensionless form is 

RTc 
c = Co -, 

Pc 
d = Do RTc 

Pc 
(9) 

(10) 

Table IT contains expressions for the coefficients Au, Bo. Co and Do. The quantity F 
represents the temperature dependence of the coefficient a. The common formula 
for F is 

(Il ) 

The expressions for the coefficients F and f are summarized in Table III. 

Thermodynamic Departure Functions 

The thermodynamic function of a real fluid is calculated from a reference value 
for an ideal gas and a departure function. This is evaluated with the aid of an EOS. 
The cubic EOS are explicit in pressure and the departure functions are therefore 
derived on the basis of the Helmholz departure function 

Ad = - p + - dv + RT In - . Iv (RT) pv 
00 v RT 

(/2) 

Substitution for P from Eq. (1) and integration yields 

~ = In -~ + ~ IV dv . 
RT p( v - b) RT 00 lI' 

(13) 
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For the van der Waals equation it follows 

Ad = In RT a 

RT p(v - b) RTv 
(14) 

The integral in Eq. (13) can be solved after substituting from Eq. (2). The result is 

r dv = _ .!. In 2v + c 1 + k = _ i • 
J 00 W k 2v + c 1 - k 

(15) 

where 

(16) 

The symbols i and k are used to simplify the notation. The molar Helmholz departure 

TABLE II 

Coefficients Ao. Bo. Co and Do. Eq. (9) 
-------- ------------

Refs Coefficients 

--------

2 Ao ~ 27/64. Bo = 1/8 
3 Ao -~ 0-42748. Eo = 0·08664 
4 Ao = 0'42748, Eo == 0·08664 
5 Ao c, 0-45724, Bo = 0·07780 
6 Ao c= [1 - 'c(1 - p)]3, Eo = P'c' 'c = 1/[3(1 + pco)] 
7 Ao = 0-46863 - 0'03783co + 0·00752co2 • Eo = 0·08928 - 0'03409co - 0.00518co2 , 

U = 1· 70083 + 0'64846co + 0·89593co2 

8 A o '- 1 + 3'c[-1 + 'c + P(1 - 2'c)] + p2,~, Eo = P'c. C = 1 + (1 - 3,c)/P'c' 'c = O' 3211 - 0'080w -1- 0'0384w2 , P ~c 0·10770 + O' 7640,c - 1'24282'~ + 
+ 0'9621O'~ 

9.10 Ao = 27/64. Bo = 0'857zc - 0'1674. Co = 1/8 - Bo 

11 Ao = 0·43711 + 0'02366co + 0'10538co2 + 0'10164co3 , 

Bo .~ 0,08779 - 0'02181co - 0'06708co2 + 0'10617co3 , 

Co = 0·05060 + 0'04184co + 0'16413co2 - 0'03975co3 

12 Ao = 3'~ + Bo[3(1 - 2'c) + Bo] + Co. B~ + (I + Co) B5 + 3'~Bo - ,g = 0, 
Co = 1-3,c' 'c = 0·32903 - 0'07680co + 0'02120co2 

13 Ao = 0'69368 -- 1'06344zc + 0·68290z~ - 0'21044zg + 0·0037527z~, 
Bo = 0·025987 + 0'18075zc + 0'06126z~, Co = 0,57750 - 1'89841zc' 
Zc = Pcvc/RTc 

14 Ao'~ 0-44869 -:- 0'04024co + 0'011l1co2 - 0.00576co3 , 

Bo ~- 0·08974 - 0'03452co + 0'00330co2 , 

Co = 0·03686 + 0·00405co - 0'01073co2 + 0.00157co3 , 

Do ~ 0,15400 + 0'14122w - 0.00272co2 + 0.00484co3 
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function is then expressed by 

Ad = In RT ai 
RT p{v - b) RT 

(17) 

Introducing 

K = kp I = ! In 2z + C 1 + K 
RT ' K 2z + C 1 - K 

(18)* 

we may write Eq. (17) in dimensionless parameters as 

AdjRT = - In (z - B) - AI . (19) 

TABLE III 

Coefficients F andl, Eqs (9), (10) and (11). Only fis given when Eq. (11) applies 

Refs Coefficients 

-- .---- ------------------------------------------------------

2 F= 1 
3 F,= Tr- I / 2 

4 1= 0·480 + 1'574w - 0'176w2 

5 1-,0'37464 + 1'54226w - 0'26992w2 

6 Tr ~ 1:/=/0 + (5Tr - 3/0 - 1)2/70, Tr> 1:1=/0 + (4 - 310)2/70, 
10 = 0·465 + 1·347w - 0'528w2 

7 Tr ~ 1: log F = ((/1 + IzTr + 13 T~) (l - Tr), 

Tr > 1: log F = ((/1 + 12 + 1 3 ) (1 - Tr), 

w < 0'49:/= 0-40685 + 1·87907w - 0·79264w2 + 0'73752w3 , 

II = 0'53684'/2 = -0'39244'/3 = 0·26507, 
0-49 < w < 1:[= 0'58198 - 0'17142w + 1'84441w2 - 1'19047w3 , 

11 = 0'79355'/2 = -0'53409'/3 = 0'37273 
8 Tr ~ 1: F= [1 + It(l - T:/2) - 12(l - Tr- I )]2, 

Tr> 1: F= 1 - (0'6258 + 1'5227w) In Tr + (0·1533 + 0'41w) (In Tr)2, 
w ~ 0'2:/1 = 0·50 + 0'27767w -+- 2'17225w2'/2 = -0·22 + 0'338w - 0'845w2, 
w > 0'2:/1 = 0·41311 + 1·14657(1),[2 = 0·0118 

9,10 Tr ~ 1:/= 0·49950 + 1'5618w - 0'1373w2 + 0'13904(Tr - 0'7) + 
+ 0'64344(Tr - 0'7)2 

11 1= 0·44060 + 1·7039w - 1·7290(·} + 0·9929w3 

12 1= 0·42241 + 1·30982w - 0,29594(02 
13 1= - 6·608 + 70-43zc - 159'Oz; 
14 1= 0·4070 + 1'3787(·) - 0'2933«/ 

* Note that the formula for j or I cannot be directly applied to the van der Waals equa-
tion for which i = Ilv and I = liz (see Eq. (14». 
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The molar entropy departure function is calculated from the equation 

Sd = - - - dv + R In - . Iv [(ap) RJ pv 
x; aT v v RT 

(20) 

Eq. (1) yields 

(21) 

which is substituted in Eq. (20) and the integral is solved to give 

Sd = InP(v - b) + ~(aa) . 
R RT R aT v 

(22) 

The temperature dependence of the coefficient a is represented by F from Eq. (9) 
and given in Table III. In terms of F we have at v = const. 

1 aa _ Ao (RTc)2 aF _ a aF _ ART T, cF 
----------- ---. 
R aT R Pc aT RF aT p FaT, 

Therefore Eq. (22) becomes 

Sd p(v - b) ai of T, iJF - = In --- + - _. = In (z - B) + AI - --
R RT RF aT FaT, 

and if Eq. (11) applies, then 

AI/TI/2 
In (z - B) _ ---' ---"-'--

1 + f(l - T,l/2) 

(23) 

(24) 

(25) 

For mixtures, the expression for the derivative (lo/2T depends on the mixing rule 
used. The common mixing rule is 

II = IIXjXjOj j , b == I,:\)J j . (" = I·\fj, 11 = IxA . (26) 
i j j j j 

where 

(27) 

When Eqs (26) and (27) hold, then using [q. (9) the following expression, valid at 
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con~tant volume and composition, may be derived 

and when Eq. (11) is valid, then 

ta 
{'T 

--- ~---~-----

288S 

(28) 

(29) 

Other departure functions are derived from Ad and Sd and are summarized in 
Table IV. 

To illustrate the use of the expressions suggested so far, the iteration formula for 
the equilibrium vapor pressure, based on a cubic EOS, will now be derived. 

TABU IV 

Departure functions 

~ = - In (2 - B) - Al 
RT 

Sd ( ) Tr ('F - = In z - B + Al - --
R F ('Tr 

AI/Trill 
= In (z - B) - ----~- - -~~-

1 + f( I - Trill) 

Hd -=z- + Al _r __ (
T. ('F 

RT F aTr 

= z - 1 _ Alp +11_ 
1 + f(1 - Tr

1/2) 

Gd_ = In 4> = :; - I - In (:; - B) - Al 
RT 

~- ~-- ~- ~---~--- -------------
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The Newton iteration formula for the pressure is 

p' = p - cp(p) 
dcp(p)!dp 

(30) 

The pressure function cp(p) follows from the condition of vapor-liquid equilibrium, 
i.e. 

cp(p) = In<pv -In<p1 (31) 

and its derivative is therefore 

dcp(pl = ::v - ZI 

dp p 
(32) 

In Table IV we find 

In <p = z - 1 - In (z - B) - AI. (33) 

The combination of Eqs (30) to (33) gives 

(34) 

This general expression is now applied to the EOS chosen. From Table I, the coeffi­
cients Cl and C2 are found. They are made dimensionless using Eq. (5) and the 
formulae for B, C and D are substituted from Eq. (10). The necessary values of 
Bo etc. are found in Table II. The expression for the dimensionless coefficient A 

follows again from Eq. (10) with Ao from Table II and the quantity F given in 
Table III or by Eq. (11) with the appropriate expression for f from Table III. Now 
the pressure is estimated, the dimensionless EOS coefficients are calculated and 
substituted in Eq. (8). The Zv and ZI values are then calculated, from which the Iv 
and II values are found. Then Eq. (34) yields a new estimate of the pressure etc. 

Fugacity Coefficient of a Component in a Fluid Mixture 

The fugacity coefficients of components are needed for calculating phase equilibrium 
in mixtures. The partial molar thermodynamic functions of the components are cal­
culated from the mixture molar functions. To simplify notation the mixture molar 
functions will not be indexed. 

For a general molar function e the following equation is valid 

(35) 

Collect. Czech. Chern. Comrnun. (Vol. 54) (1989) 



~---~--~-~ -------- ----- -----~ 

Cubic Equations of State 2887 

This can be transformed to 

e· = e + - - LX. -( oe) (oe) 
I OXi T,V,Xk"l i J OXj T,V,Xk"J 

(36) 

As suggested by Novak et aJ.15,16, it is convenient to introduce an analogue to 
Eq. (35). which applies at constant molar volume (instead of pressure), i.e. 

(37) 

This can be substituted in Eq. (36) to yield 

ej = e + (~) - IX j (~) - (oejovh,x (Pi - p). (38) 
OXi T,V,Xk'" i OXj T,V.Xk"J (opjovh.x 

This equation may be used to calculate the partial molar departure functions. For 
the partial molar Helmholz departure function we get 

Adi = - fV (Pi - RT) dv - RTln ~ + P(Pi - p) , (39) 
00 v RT (opjovh.x 

from which 

1 fV (_ RT) pv pv 
In ¢i = - RT 00 Pi - -;; dv - In RT + RT - 1 . (40) 

Substitution of Eq. (1) in Eq. (37) gives 

_ RT RT ( - ) iii a ( _ ) 
Pi = -- + bi - b - - + - W2 - W , 

v - b (v - b)2 W W 
(41) 

where an analogue of Eq. (37) defines the quantities iii> bi and Wi' Substituting from 
Eq. (41) in Eq. (40) and integrating yields 

RT b. - b ii· a fV 
In ¢i = In - + -'-- - -' i - -

p(v - b) v - b RT RT 00 

W· - w , dv. 
w2 

(42) 
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If U and b are defined by Eqs (26) and (27), then 

iii = 2 LXjU ij - a, hi = bi 
j 

and according to Eq. (2) we have 

Mika: 

(43) 

(44) 

where the symbols d 1 and d2 are introduced to simplify the form of the equations. 
The integral in Eq. (42) has an analytical solution. After rearrangement and re­
writing the equation with the aid of the dimensionless quantities the final form of 
the expression for In c/>i is 

with 

Inc/>. = -In(z-B)+-'-(z-l)-- --1M B- A (L ) 
I B K2 W 

L = [J - K2 (~ - 1)] z + 2C1 D1 - C 1 Dz , 

M = J - (6 i - 1) K2, J = C 1 D 1 - 2D2 , 

()i = 2(Lxj aiJja = 2(a il/2 ja) Lx/i - kij) a]IZ = 
j j 

= 2(IXjAij)jA = 2(AJ I2jA) Ixll - kij)AJ I2. 
j j 

(45) 

(46) 

The formula for 6i is here based on Eqs (26) and (27). The expressions for Dr and 
Dz are summarized in Table V. Eq. (45) is a general formula for all EOS, for which 
Eqs (1) and (2) hold. 

In case the coefficients Cl and C2 are multiples of b, Eq. (45) can be simplified. 
Then the following relations are valid 

(47) 

Expressions for the dimensionless coefficients K 1 and K z are given in Table V. From 
Eqs (5), (16), (18), (44) and (47) follows 

K = (Ki - 4Kz)1/2 B, Dr = K 1(Bi - B), D2 = 2K2B(Bi - B) , 

1 = (K2 _ 4K t1/2 B- 1 1n 2z + [Kl + (K~ - 4K2)1IZ] B (48) 
1 2 2z + [Kl - (Ki - 4Kz)1 /2] B 
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and substituting in Eqs (45) and (46) yields after rearrangement 

(49) 

This is equivalent to Eq. (5 -8.12) in the book of Reid et aU. This equation allows 
to write expressions which may be simpler than those published by authors of the 
EOS. E.g. Yu and Lu 7 suggest a very complicated formula for In ¢i> which requires 
a considerable effort for its derivation. According to the procedure proposed here, 
we would find from Table V, that the coefficients Kl and K2 and hence Eq. (49) 
are applicable. The expressions for Kl and K2 are used in the formula for I, Eq. 
(48), and this gives after substituting in Eq. (49) 

In ¢i = - (z - 1) - In (z - B) + - - - 6i In , Bi A (B j ) 2z + uB + K 
B K B 2z + uB - K 

with 

K = [u 2 - 4(u - 3)]1/2 B, u = cJb + 3 

and 6j defined in Eq. (46). It can be shown that the equations for In ¢j are equivalent. 

TABLE V 

Coefficients K1 ,2 and the differences D1 = Cli - C 1 and D2 = C2i - C2 

Refs Kl 

2 0 0 0 0 
3 0 Bi-B 0 
4 0 B j -B 0 
5 2 -1 2(Bj - B) -2B(Bj - B) 
6 1 + 3w -3w (1 + 3w) (Bi - B) -6wB(Bj - B) 
7 u u- 3 u(Bi - B) 2(u - 3) B(Bj - B) 
8 C 1- C C(Bj - B) 2B(Bj - B) (1 - C) 

9,10 2(Cj - C) 2C(Cj - C) 
11 2(Cj - C) -2C(C1 - C) 
12 B j - B+ C j - C -(Bj - B)C-

B(Cj - C) 
13 B j - B+ C j - C -(Bj-B)C-

B(Cj - C) 
14 -Cj +C+Dj - D -(Cj - C)D-

C(D1 - D) 
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For the bubble and dew point calculations, the partial derivatives of In l/Ji with 
respect to temperature and pressure, respectively, are needed at constant composition 
and pressure and temperature respectively. We shall represent here both the tempera­
ture and pressure by a common symbolt. Then from Eq. (45) follows 

a In l/J, = __ 1 _ (az _ aB) + Bi az _ (.!::... _ 1M) (_1 aA _ 2A aK) _ 
at z - B 01 at B at W K2 at K3 at 

(50) 

where 

aJ = C aDt + D aCI _ 2 aD2 , 
01 tOll al at 

aL = [J + K2 (Bi _ 1)J az + z [aJ + 2 (Bi - 1) K aKJ + 
at B at af B af 

+ 2 (c aDt + D ac2) _ C aD2 _ D aCt 
2 at 1 at 1 at 2 01 ' 

aM = aJ _ 2(c5. _ 1)K aK _ K2 ac5 i . 

01 at 1 al al 
(51) 

The derivatives of D I ,2 can be found after substitution from Table V. The general 
expressions for the partial derivatives of A, B, Ct. C2 , K, I, z and c5 i with respect 
to temperature and pressure are given in Table VI. 

For the more common EOS, Eq. (49) holds. At constant pressure and composition 
the partial derivative of In l/J, with respect to temperature is 

a In l/J, = B, ~ __ 1_ (az + B) + (Bi _ (5.) (I aA + A~) + Al ac5 i • (52) 
aT B aT z - B aT T BlaT aT aT • 

The derivatives on the righthand side of this equation are given in Table VI, but 
az/aTmay be expressed as 

(B - z) (a-Iaa/aT - 2T- I) - {z2(1 - Kd + Z[KI + 2B(KI - K2)] + 
az + A + K2B(2 + 3B)} BT- I 

aT z{3z + 2[B(KI - 1) - I]} + A - B[Kt(1 + B) - K2B] 

(53) 
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and aJjaTas 

aJ =!.... _ 4 ziT + azjaT . 
aT T (2z + K t B)2 - (K~ - 4K2 ) B2 

(54) 

At constant composition and temperature we have 

a In <Pi = Bi az _ azlap - Blp + (Bi _ (\) (~ + aJ) A, (55) 
ap B ap z - B B p ap 

TABLE VI 

Partial derivatives of A, B, C t , C2 , K, I, Z and 0i with respect to temperature and pressure 

aB 
aT 

B 

T 

Constant pressure and composition 

aCl = -2 C2 aK = _ !S 
aT T' aT T 

!!.... = !.... _ 4 ziT + azlaT 
aT T (2z + CI)2 - K2 

~ = (B - z) aAlaT - [z(z + C1) + A + Cz] BIT - (z - B-1) (zC1 + 2C2 )IT 
aT z[3z + 2(C1 - B-1)] + A - (1 + B) C1 + C2 

_VU_i = a.-1/2~ _ a-l~ [). + 2~ '.>:.(1 - k .. )~ 
!lS: ( a 1/2 !l ) 1/2 a 1/2 

aT I aT aT 1 a '7 J IJ aT 

aai l2 = (a l )1/2 aFt l2 = 
aT Fj aT 
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TABLE VI 

(Continllcd) 

Mika: 

Constant temperature and composition 

cA _ :".! iJB B aCI = CI vC z = 2 Cz iJK K 
iJp p iJp p iJp p iJp p' iJp P 

iJJ = _!.- + 4 zip - iJz/iJp _ 
iJp p (2z + C1)2 - K2 

~~ = ~ i~B - z) + B[z(z +_C1L±- A + Cz] + (1 + B - z) (zC 1 + 2~2) 
iJp p z[3z+2(C1 -B-l)]+A-(1+B)Ct +Cz 

iJ6 j = 0 
iJp 

with 

oz ~ A(B - z) + B{Z2(1 - K I) + Z[KI + 2B(Kt - K 2 )] + A + K2B(2 + 3B)} 

(IP P z{3z + 2[B(KI - 1) - I]} + A - B[(l + B) KI - K2B] 

(56) 

and 

oj _ !.- + 4 zip - GZIOp 
iJp p (2z + K t B)2 - (Ki - 4K2 ) B2 

(57) 

The equations given in this paper facilitate the treatment and comparison of dif­
ferent cubic EOS. E.g. Patel and Teja 14 suggest this formula for the fugacity coeffi­
cient 

a z + M 
In¢ = z - 1 -In(z - B) - ---In--

2RTN z + Q 

where 

M = -- - N -, N = be + -'---"-( b + C ) P [(b + eYJ- 1/2 

2 RT 2' 

Q = (b + e + N)L 
2 RT 
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and a. b, e are the EOS coefficients. In our treatment, the Eq. (33) applies 

In ¢ = z - I - In (z - B) - AI 

The quantity A is defined in Eq. (4) and I in Eq. (18). We find the formula for K 

from Eqs (16) and (18). The necessary expressions for el and C2 are given in Table I. 
Then 

K = [(B + C)2 + 4BCJ1 /2 and I = ~ In 2z + B + C + K . 
K 2z + B + C - K 

It can be seen that there is an error in the definition of the coefficient B (see Eq. (4)). 
The quantity N should correspond to our kj2, i.e. 

k _ [(b + e)2 J1 /2 - - -- + be • 
2 2 

Therefore, the sign of the exponent in the definition of N is wrong and the denomi­
nator 2 should be 4. Patel and Teja14 define another quantity d as 

[ (b + e)2J1 /2 
d = be + ---

4 

which is again kj2 and, therefore, the correct expression for N. The comparison of 
their expression for the molar entropy departure function with our Eq. (24) shows 
the im:orrect inclusion of pressure in their formula. 

This was another example of the utility of the unified treatment, which is also useful 
for computer programming. 

LIST OF SYMBOLS 

A dimensionless coefficient, Eq. (4) 
A molar Helmholz function, J mol- 1 

Ao dimensionless coefficient, Eq. (9) or Table II 
a EOS coefficient, Pa m6 mol- 2 

a ij binary coefficient, Eqs (26) and (27), Pa m6 mol- 2 

B dimensionless coefficient, Eq. (4) 
Bo dimensionless coefficient, Eq. (9) or Table II 
b EOS coefficient, m3 mol- 1 

C dimensionless coefficient, Eq. (4) or Table I 
Co dimensionless coefficient, Eq. (9) or Table II 
C p molar heat capacity at constant pressure, J mol- 1 K- 1 

C 1.: dimensionless coefficients, Eq. (5) 
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C 

Cl 

Cz 
D 

EOS coefficient, m3 mol- 1 

coefficient, Eq. (2) or Table I, m3 mol- 1 

coefficient, Eq. (2) or Table I, m6 mol- z 
dimensionless coefficient, Eq. (4) 
dimensionless coefficient, Eq. (9) or Table II 

~ --~----~~ --~-- -----

Mika: 

Do 

D1,z 
d 

dimensionless form of the differences from Eq. (44), see also Eq. (48) or Table V 
EOS coefficient, m3 mol- 1 

d1 

d2 

e 

difference, Eq. (44), m3 mol- 1 

difference, Eq. (44), m 6 mol - 2 

general molar function, J mol- 1 

F dimensionless coefficient, Eq. (10) or Table III 

f dimensionless coefficient, Eq. (11) or Table III 
G molar Gibbs function, J mol- 1 

H molar enthalpy, J mol- 1 

I dimensionless parameter, Eq. (18) 
parameter, Eq. (15), mol m- 3 

J dimensionless parameter, Eq. (46) 
dimensionless parameter, Eq. (18) K 

K1,z 
k 
k ij 

L 

dimensionless coefficients, Eq. (47) or Table V 

I 
M 
p 

R 
S 
T 
v 
W 

parameter, Eq. (16) 
dimensionless binary interaction coefficient 
dimensionless parameter, Eq. (46) 
temperature or pressure 
dimensionless parameter, Eq. (46) 
pressure, Pa 

universal gas constant, J mol- 1 K- 1 

molar entropy, J mol- 1 K- 1 

temperature, K 
molar volume, m3 mol- 1 

dimensionless quantity, Eq. (5) 
quantity defined by Eq. (2), m6 mol- z 

mole fraction 
compressibility factor 
quantity defined by Eq. (46) 
fugacity coefficient 
acentric factor 

Subscripts 

c critical property 
d departure function 
i, j, k components 
I liquid phase 
r reduced property 
v vapor phase 

Superscripts 

partial molar quantity 
quantity defined by an equation having the form of Eq. (37) 
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